E. General pH Strategy: Finding the pH after Acid or Base is added to a solution

- Whether it be to a buffer solution, a strong acid solution, a weak acid solution, a strong base solution or a weak base solution prior to the new addition
- The strategy is similar to when we added acid or base to a buffer
- 1. Write out the acid-base reaction
 - It helps to recognize which species are acidic or basic or neutral, and weak or strong
- 2. Calculate the initial moles
 - Number of moles = molarity x volume (in Liters)
- 3. Use ICE to determine post-reaction ("E") moles

4. Assess the post-reaction situation, based on what's left at the end

5. Solve the pH problem from there

	Post-Reaction Situation		
1	Strong acid only	$[\mathrm{H}^+] = [\mathrm{SA}]$	
2	Strong acid plus weak acid	$[\mathrm{H}^+] = [\mathrm{SA}]$	Ignore WA, which makes
			insignificant contribution
3	Strong base only	[HO ⁻] = [SB]	
4	Strong base plus weak base	[HO ⁻] = [SB]	Ignore WB, which makes
			insignificant contribution
5	Weak acid only	$[\mathrm{H}^{+}] = \sqrt{\mathrm{K}_{\mathrm{a}}\mathrm{x}[\mathrm{W}\mathrm{A}]}$	Qual: pH < 7
6	Weak base only	$[\mathrm{HO}^{-}] = \sqrt{\mathrm{K}_{\mathrm{b}} \mathrm{x} [\mathrm{WB}]}$	Qual: pH > 7
			May need to find K _b from K _a
7	Weak acid plus weak base	$pH = pK_a + log \frac{base}{acid}$	Buffer solution
8	No acid or base;	pH = 7.0	
	only neutral salts		

- For many of these, it will be necessary to calculate molarities
- To do this, make sure that you factor in the total, combined volume

Key: Recognizing the Final Situation!!